Evidential network-based failure analysis for systems suffering common cause failure and model parameter uncertainty

Author:

Zuo Lin1,Xiahou Tangfan2,Liu Yu23ORCID

Affiliation:

1. School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, PR China

2. School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, PR China

3. Center for System Reliability and Safety, University of Electronic Science and Technology of China, Chengdu, PR China

Abstract

The fault tree analysis has been extensively implemented in failure analysis of engineered systems. In most cases, the probabilities of basic events, e.g. components’ failures, are represented by crisp values in the fault tree analyses. However, due to lack of knowledge, scarcity of failure data, or vague judgments from experts, it may produce parameter uncertainty associated with degradation models of components/systems, and such model parameter uncertainty can be quantified by the epistemic uncertainty. In addition, the common cause failure, related to the simultaneous failures of two or more components caused by physical interactions or shared environments, often exists in advanced engineered systems and computing systems. In this paper, by considering both the common cause failure and the epistemic uncertainty associated with model parameters, an evidential network model embedded with common cause failure is proposed to facilitate system failure analysis. The detailed transformations from some logic gates of a fault tree to an evidential network model are given. Moreover, the conditional belief mass tables are constructed to quantify the dependency between the states of components and the entire system. An engineering case of an aero-engine oil system, together with comparative results, is presented to demonstrate the effectiveness of the proposed evidential network model.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3