Method for identifying and eliminating ventilator false alarms of ventilator based on clinical data analysis

Author:

Wang Feng1ORCID,Gu Wunan1,Fu Rao1

Affiliation:

1. National Foundation Research Laboratory of Fault Prevention and Control in Hazardous Chemicals Production System, Beijing University of Chemical Technology, Engineering Research Center of Chemical Technology Safety Ministry of Education, Beijing, China

Abstract

Ventilator is a kind of critical medical equipment with the highest clinical risk, and it plays an essential role in intensive care and maintaining patient lives. Identifying and eliminating ventilator false alarms is one of the most critical issues in the clinical treatment process. A considerable number of false-positive alarms may happen because of inaccurate parameter alarm threshold setting and inappropriate alarm rule application. This study proposes a method for identifying and reducing the false alarms of the ventilator based on clinical data analysis. It firstly establishes a real-time monitoring system for the ventilator. A wireless network module can be used to transmit data, including parameter data and alarm data, to the server. Then, the data changing range for one parameter can be calculated and determined. The change range of one parameter can be divided into 10 sub-ranges. The frequency of each parameter monitoring value presented in each sub-range can be calculated. The parameter alarm thresholds can be set according to the frequencies and the value distribution in different sub-ranges. The alarm times for one or more parameters in a specified period can be acquired. The clinical data can be utilized to verify the alarm thresholds. The method has been applied to identify and eliminate false alarms for ventilators in a hospital. The application effect shows that this method can help set the parameter alarm thresholds and identify and eliminate most false alarms.

Funder

Fundamental Research Funds for the Central Universities

CNOOC Technical Cooperation Project

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3