Parametric study and multi-criteria optimization during turning of X210Cr12 steel using the desirability function and hybrid Taguchi-WASPAS method

Author:

Safi Khaoula1ORCID,Yallese Mohamed Athmane1,Belhadi Salim1,Mabrouki Tarek2,Chihaoui Salim1

Affiliation:

1. Department of Mechanical Engineering, Mechanics and Structure Laboratory (LMS), Université 8 Mai 1945 Guelma, Guelma, Algeria

2. Applied Mechanics and Engineering Laboratory (LR-11-ES 19), University of Tunis El Manar, Tunis, Tunisia

Abstract

The present study examines the machining of a cold work tool steel (X210Cr12) using a triple chemical vapor deposition coated carbide tool (Al2O3/TiC/TiCN). The paper is focused on an experimental investigation as well as a modeling and optimization of the working cutting parameters in relationship with the studied material. For that, first, a set of experimental tests were built in order to evaluate the effect of cutting parameters (r, Vc, f, and ap) on the output parameters, namely surface roughness (Ra), cutting force (Fz), insert flank wear (Vb), and 3D roughness distribution. In a second step, a Taguchi L16 (4^3 2^1) design of experiment (DoE) was exploited with the aim to develop a modeling of output working parameters based on the response surface methodology. An optimization of the cutting conditions was performed using the desirability function (DF) approach and the hybrid Taguchi-weighted aggregate sum product assessment method. The desired objective is to obtain optimal cutting regime corresponding to the simultaneous minimization of parameters Ra and Fz, and maximization of material removal rate. The results found show that the factor f influences Ra with 42.55% and that parameter ap affects parameters Fz and Pc with 67.55 and 60.88%, respectively. For the DF and WASPAS methods, the optimal regimes selected is r = 1.6 mm, Vc = 366 m/min, ap = 0.17 mm, f = 0.16 mm/rev and r = 1.6 mm, Vc = 180 m/min, ap = 0.3 mm, and f = 0.08 mm/rev, respectively. The proposed work concerns all mechanical manufacturing companies, as it provides the necessary information on the optimal working conditions of the tool/material pair.

Funder

General Directorate of Scientific Research and Technological Development

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3