Mechanical characterization of eggshell ash and boron carbide reinforced ZA-27 hybrid metal matrix composites

Author:

Singh Pawandeep1ORCID,Mishra RK1,Singh Balbir1

Affiliation:

1. School of Mechanical Engineering, Shri Mata Vaishno Devi University, Jammu and Kashmir, India

Abstract

This study aimed at discovering the influence of low-cost eggshell ash (ESA) and boron carbide (B4C) addition on microstructure and mechanical characteristics of ZA-27 hybrid composites. Six different composites were fabricated utilizing the stir casting technique with different weight percentages of ESA and B4C particles varied from 0-5 wt.%. Composites were tested for density, hardness, compressive strength, tensile strength, and impact strength. X-ray diffraction (XRD) and scanning electron microscope (SEM) were utilized for the characterization of composites. Microstructure examination using SEM exhibited homogeneously dispersed reinforcements in the matrix. ESA particles decreased the composite density by 3.12%, and after the addition of B4C particles, density was found to be increased but was still lower than the base ZA-27 alloy. The hardness, tensile and compressive strength of the composites increased with the addition of reinforcements. However, composite reinforced with maximum wt.% of B4C particles showed a decreasing trend. The impact strength of the composites decreased when compared with the base alloy, but the reduction was marginal. Improved hardness, tensile and compressive strength of the composites was attributed to homogeneously dispersed ESA and B4C particles in the matrix. Higher tensile strength resulted from strong interfacial bonding between reinforcements and metal matrix, and low impact strength was due to brittle failure and plastic deformation.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3