Novel robust controller design for load sway reduction in double-pendulum overhead cranes

Author:

Ouyang Huimin1ORCID,Deng Xin1,Xi Huan1,Hu Jinxin1,Zhang Guangming1,Mei Lei1

Affiliation:

1. College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, China

Abstract

It is seen that when the hook mass is larger than the load mass or the load has distributed mass property, the load sway of the crane system presents as double-pendulum effect. In this situation, crane system has two different natural frequencies so that the sway characteristic becomes more complex and greatly increases the difficulty of the dynamic performance analysis and controller design. Moreover, the rope length changes significantly affect the stability and control performance of the crane system. In order to solve the aforementioned problems, the linear dynamics of a two-dimensional overhead crane with double-pendulum effect is derived based on a disturbance observer, and is decoupled for controller design by modal analysis. Next, a state feedback controller is presented to achieve robust control performance for a given range of rope length changes. The controller gains are obtained via linear matrix inequality optimization method. Finally, numerical simulations and experimental results validate that the proposed method has superior control performance.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3