EHL film thickness and load dependent power loss of cycloid reducers

Author:

Mihailidis Athanassios1,Athanasopoulos Emmanouil1,Agouridas Konstantinos1

Affiliation:

1. Laboratory of Machine Elements and Machine Design, Department of Mechanical Engineering, Engineering Faculty, Aristotle University of Thessaloniki, Thessaloniki, Greece

Abstract

Robotic arms, space joints and micro-medical devices demand high positioning accuracy, high efficiency, lightweight reducers which often are required to be lubricated for life. Cycloid drives have been gaining popularity in recent years due to their compact form, high reduction ratio and stiffness. Energy loss minimization and ensured good lubrication are vital for those applications. Total power loss is commonly computed as sum of two parts. The first is the zero or minimum-load, which is caused mainly by oil churning and drag as well as contact seals friction. The second part is load dependent and is related to the transmitted power. It is dominated by the friction in all sliding contacts. Geometry parameters of the meshing surfaces affect the load distribution as well as the rolling and sliding velocity of the contacting bodies. The study utilizes meshing equations and an ideal load distribution model to calculate pressure, rolling and sliding at the contacts of a typical 1-disc cycloid reducer. The conditions are characterized by severe slip and counter-turning. A comparison with established EHL models revealed high discrepancy at areas of counter-turning. The ultimate aim of the present study is to calculate the local film thickness and friction. Due to the shortcomings of the aforementioned models, an advanced numerical EHL solver was employed. The determined conditions of the contact points were used as input for the solver. In order to demonstrate the method, calculations were performed for four different load cases as a way of showing the effect of input speed and torque on the efficiency.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3