Effect of heat treatment on nano-mechanical behaviour of matrix and carbide phases of Fe–13Cr–1C hardfaced alloy coating

Author:

Kaushik N.Ch.1ORCID,Sai Krishna T.1,Tarun Satya A.1,Ajay Vamsi J.1,Rastogi Pratyank2,Kiran Raphael P.2

Affiliation:

1. Department of Mechanical Engineering, SOET, BML Munjal University, Sidhrawali Gurugram, Haryana-122413 India

2. Industron Nanotechnology Pvt. Ltd, Trivandrum, Kerala - 695581 India

Abstract

Fe–Cr–C hardfaced coatings are applied over components used in mining, earth moving, ash and coal handling systems. The performance of these coatings depend on microstructural phases present in the deposit post-solidification and/or heat treatment. To prevent the failure of a coating, understanding the mechanical behaviour of the existing phases is one of the key areas of focus. In the current investigation, the study was limited to understand the influence of heat treatment process on nano-scale hardness and reduced modulus properties of phases of Fe–13%Cr–1%C hardfaced alloy coating by accelerated property mapping (XPM) technique. Colour variation in the property maps showed the relative deformation nature of the material. The hardness and reduced modulus values for carbide phases were found to be higher in all conditions. From Weibull statistical analysis, the Weibull modulus values reduced drastically for the carbide phase after heat treatment, revealing higher variability of mechanical properties. The above trends were observed mainly due to %C and %Cr difference across phases and carbide phase morphology transformation happened due to heat treatment.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3