Dynamic behavior of particulate metal matrix nanocomposite plates under low velocity impact

Author:

Rasoolpoor M1,Ansari R1,Hassanzadeh-Aghdam MK1ORCID

Affiliation:

1. Faculty of Mechanical Engineering, University of Guilan, Rasht, Iran

Abstract

The main purpose of this work is to investigate low velocity impact behavior of metal matrix nanocomposite plates reinforced with silicon carbide nanoscale particles. First, a micromechanical model is proposed to predict the effective mechanical properties of metal matrix nanocomposites. Two features of the nanocomposite microstructure affecting the elastic properties, including agglomerated state of silicon carbide nanoparticles and size factor, are taken into account in the micromechanical simulation. Then, finite element method is used to analyze the time histories of contact force and center deflection of silicon carbide nanoparticle-reinforced metal matrix nanocomposite plates. Several detailed parametric studies are accomplished to explore the influence of volume fraction, diameter and dispersion type of silicon carbide nanoparticles, spherical impactor velocity and diameter, plate dimensions, as well as different boundary conditions on the dynamic response of metal matrix nanocomposite plates. The presented approach accuracy is verified with the available open literature results displaying a clear agreement. The results indicate that adding the silicon carbide nanoparticles into the metal matrix materials leads to a reduction in plate center deflection and an increase in contact force between the plate and projectile. Moreover, it is found that the nanoparticle agglomeration dramatically decreases the contact force and increases the center deflection of metal matrix nanocomposite plates.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3