Effects of process parameters on cutting forces, material removal rate, and specific energy in trochoidal milling

Author:

Wagih Mohamed12ORCID,Hassan Mohsen A13,El-Hofy Hassan4,Yan Jiwang5ORCID,Maher Ibrahem16

Affiliation:

1. Department of Industrial and Manufacturing Engineering, Egypt-Japan University of Science and Technology, Alexandria, Egypt

2. Design and Production Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt

3. Mechanical Engineering Department, Faculty of Engineering, Assiut University, Assiut, Egypt

4. Production Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt

5. Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Yokohama, Japan

6. Department of Mechanical Engineering, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, Egypt

Abstract

Trochoidal milling has been developed to enhance tool life during slot machining. It is characterized by reduced cutting forces, cutting temperature, and tool wear as compared to conventional milling processes. It is effective in machining difficult-to-cut materials, high-speed machining, and groove corners. However, this process has not been deeply investigated enough to discover its advantages and optimize its parameters. A full factorial design of 144 experiments has been applied in this paper to investigate extensively the effects of axial depth of cut, feed rate, and trochoidal step on material removal rate, cutting forces, and specific energy in trochoidal milling. Trochoidal step and axial depth of cut almost have the same contributions on cutting forces by 32% and 31% respectively, followed by feed rate by 25%. Feed rate, trochoidal step, and axial depth of cut influence the material removal rate by 37%, 30%, and by 19% respectively. The contributions of feed rate, trochoidal step, and axial depth of cut on relative specific energy are 57%, 24%, and 8% respectively. The increase of axial depth of cut increases the maximum resultant force till a threshold value, then it stabilizes. This behavior occurred due to the increase of the maximum engagement angle to a certain limit, then it does not increase any more. Both feed rate and trochoidal step linear affect maximum resultant force and material removal rate, while the relationships are non-linear for specific energy. It is recommended to machine slots in full depth with the highest possible trochoidal step and feed rate, considering the increase of tool wear and surface roughness. It is preferred to use a cutting tool of a large helix angle and small diameter to reduce the threshold axial depth of cut. Overall, this study is significant in characterizing, designing, and optimizing of trochoidal milling through experimental work.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3