Determination of local heat transfer coefficients in precision castings by genetic optimisation aided by numerical simulation

Author:

Vasileiou AN1,Vosniakos G-C2,Pantelis DI1

Affiliation:

1. Shipbuilding Technology Laboratory, Department of Marine Structures, School of Naval Architecture and Marine Engineering, National Technical University of Athens, Athens, Greece

2. Department of Manufacturing Technology, School of Mechanical Engineering, National Technical University of Athens, Athens, Greece

Abstract

The heat transfer coefficient between casting and mould is the most crucial parameter in predicting the evolution of solidification and the resulting properties of the part. In numerical simulations setting, heat transfer coefficient value is considered an ill-posed, inverse problem that requires experimental data, whose solution, if at all possible to reach, is often numerically correct but physically meaningless. In this paper, it is proposed to use a Genetic Algorithm which stochastically explores alternative heat transfer coefficient values. These are evaluated by running a numerical simulation and comparing the resulting cooling curves at a number of nodes of interest to their experimentally measured counterparts until a close enough match is achieved. The combinatorial complexity of determining different heat transfer coefficients corresponding to different regions of complex castings, which are selected due to their differing casting moduli, is possible to tackle in this way with reasonable computational resources. Furthermore, different well-established forms of heat transfer coefficient function can be tried, notably heat transfer coefficient as a function of time (either stepwise or exponential) and as a stepwise function of temperature. Integer encoding in the Genetic Algorithm and a database of accumulating simulation results are features that were developed in order to reduce computational load. The approach is successfully demonstrated on a brass part produced by investment casting, exhibiting three sections of different casting moduli.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3