Modelling and optimization of surface roughness in chemical mechanical polishing based on DNN-GA

Author:

Pan Bo1,He Zengxu1,Guo Jiang1,Cheung Benny2,Wang Dongzhou3ORCID

Affiliation:

1. Key Laboratory for Precision and Non-Traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian, China

2. Partner State Key Laboratory of Ultra-precision Machining Technology, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong

3. Jinan Institute of Quantum Technology, Jinan, China

Abstract

The surface quality of Lithium Niobate (LiNbO3) has a significant influence on photonics and optoelectronics components. However, the prediction and optimization models of surface roughness were not accurate due to the random parameters. Hence, a prediction model of surface roughness is established based on an improved neural network, and a new method is proposed to optimize the arguments in chemical mechanical polishing (CMP) process. In the model, the structure of the neural network is optimized according to data features rather than choosing networks randomly. To improve the model accuracy, the optimal number of hidden layers is 4 and the corresponding amounts of nodes in each layer are 46, 34, 28, and 33, respectively. ReLU function is chosen as activation function. Subsequently, the relationship between surface roughness and processing parameters is built and the variation process of surface roughness is particularly considered. The accuracy and generalization ability of the model is verified by the experiments with the Mean Absolute Percentage Error (MAPE) of 6.42% and Root Mean Square Error (RMSE) of 0.403. Furthermore, the Genetic Algorithm (GA) method based on the selected model is applied to optimize processing arguments under the target surface roughness value of 0.3 nm. The accuracy of the fusion model is also validated by experiments with an error of 13.3%.

Funder

science fund for creative research groups

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3