Planar Couette flow of power law nanofluid with chemical reaction, nanoparticle injection and variable thermal conductivity

Author:

Soumya DO1,Gireesha BJ1ORCID,Venkatesh P2ORCID

Affiliation:

1. Department of Studies and Research in Mathematics, Kuvempu University, Shimoga, India

2. Department of Mathematics, Sahyadri Science College, Kuvempu University, Shimoga, India

Abstract

This article presents the transport of thermal energy and mass in the mixed convection steady planar Couette flow of power-law nanofluid with variable thermal conductivity through a permeable microchannel. The entropy production deliberation here is to investigate the irreversibility aspects. The momentum equation has been made by the permeability of the porous medium, Hall current effect, thermal, and solutal bouncy force. The mathematical model for the thermal energy has been formulated by Ohmic dissipation, Brownian motion, temperature-dependent thermal conductivity, and thermophoresis. The microchannel boundaries retain the no-slip boundary conditions. The concentration formulation has been made by nanoparticle injection rate and chemical reaction. The momentum, energy, and solutal formulations have been numerically cracked by means of Runge–Kutta–Fehlberg fourth fifth-order numerical procedure. The applied Hall current effect generates the fluid flow in the transverse direction. The flow along both axial and transverse direction enhances with thermal and solutal Grashof number and diminutions with permeability of the porous medium. Optimum magnitude of thermophoresis and Brownian motion amplifies the thermal energy of the shear thinning fluid. Concentration field exhibits the opposite nature with the nanoparticle injection rate parameter and chemical reaction parameter. Hall current parameter enhances the irreversibility of the Newtonian nanofluid.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3