Effects of plasma treatments of polypropylene adhesive joints used in the automotive industry

Author:

Ciardiello Raffaele1ORCID,D’Angelo Domenico2,Cagna Laura3,Croce Alessandro3,Paolino Davide Salvatore1ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy

2. Plasma Nano-Tech, Environment Park, Turin, Italy

3. Department of Science and Technological Innovation, University of Eastern Piedmont, Alessandria, Italy

Abstract

Plasma treatment has been used in recent years to activate the surfaces of adhesive substrates and thus as an adhesion promoter between adhesive and substrates. The use of plasma treatments is widely adopted in the automotive industries especially for polymers that present low surface energy, such as polypropylene. In this work, polypropylene substrates used in the automotive industries have been treated with two different techniques: vacuum and atmospheric plasma. Then, polyurethane and methacrylate adhesives have been used to bond single lap joints (SLJs). Typically, these two adhesives cannot bond polypropylene substrates without surface treatments. An experimental plan has been designed to investigate the process parameters that can increase the functional polar groups (FPGs) maximizing the adhesion strength. Besides the types of plasma, two different gas carriers (air and nitrogen) and different treatment times have been investigated. The substrates, treated and not treated, have been assessed through scanning electron microscopy, energy-dispersive X-ray analysis, and Fourier-transform infrared spectroscopy to quantitatively assess the increment of FPGs after the different treatments. The experimental plan shows that the atmospheric plasma can improve the surface of the substrates by using a smaller time. Mechanical tests on SLJs show that methacrylate and polyurethane cannot bond polypropylene substrates without the plasma treatment. On the other hand, the treated substrates can form a strong bonding with the adhesive since all SLJs exhibit a substrate failure. Mechanical tests have been also carried out after three different aging cycles showing that the adopted plasma treatment is not affected by the aging cycles.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3