Affiliation:
1. Department of Mechanical Engineering, National Taipei University of Technology, Taipei
2. Department of Mechanical and Automation Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City
Abstract
An integrating optimization procedure is presented to improve the von Mises stress and fatigue safety factor for a handlebar stem system in a bicycle system. The optimization procedure involves uniform design of experiment, Kriging interpolation, genetic algorithm, and nonlinear programming method. Using ANSYS/Workbench software and the ISO 4210 bicycle handlebar stem testing standard, the von Mises stress for the lateral bending test simulation and the fatigue safety factor for the fatigue test simulation is calculated. The von Mises stress and fatigue safety factor are combined into a single and integrated objective function, and Kriging interpolation is then used to create the surrogate model of the integrated objective function. When the integrating optimization procedure is used, the integrated objective function demonstrates that the von Mises stress for the optimized handlebar stem is reduced to 225 MPa and the fatigue safety factor increases to 1.796. This shows that the optimized design increases the strength of the handlebar stem. The proposed technique yields a handlebar stem with an optimized shape.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献