Enhancing efficiency and accuracy in robotic assembly task planning through tool integration using a hybrid class topper optimisation algorithm

Author:

Champatiray Chiranjibi1ORCID,Bahubalendruni MVA Raju2ORCID,Mahanta Golak Bihari3,Truong Pham Duc4,Mahapatra Rabindra Narayan5

Affiliation:

1. Alliance College of Engineering and Design, Alliance University, Bangalore, Karnataka, India

2. National Institute of Technology Puducherry, Karaikal, Puducherry, India

3. National Institute of Technology Patna, Bihar, India

4. University of Birmingham, Birmingham, UK

5. National Institute of Technology Agartala, Agartala, India

Abstract

Uncertainties in robotic assembly can substantially influence the quality of assembly task planning, often resulting in suboptimal solutions. It is crucial to account for these uncertainties when developing assembly task plans that are both efficient and practical for multi-part products. To address such issues, the proposed method integrates the NelderMead simplex algorithm with the Class Topper Optimisation Algorithm to create a hybrid NelderMead Class Topper Optimisation Algorithm. This study uses a vibration generator as an example to illustrate the application of the proposed method. Ensuring tool accessibility is emphasised, and the assembly tasks are initialised accordingly. The feasibility of these tasks is determined using liaison and tool-integrated geometric feasibility predicate analysis. Multiple criteria are considered to achieve the most efficient robotic assembly task planning, including part reorientation, gripper or tool change and the energy required to assemble the part. The effectiveness and robustness of the proposed optimisation algorithm are demonstrated by comparing it with other algorithms, such as the teaching-learning-based algorithm, the genetic algorithm, the bees algorithm and the particle swarm optimisation algorithm. The results have shown that the proposed approach is highly effective for real-industrial relevant problems.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3