A Flow Model for Side Chambers of Centrifugal Pumps Considering Radial Wall Shear Stress

Author:

Gu Yandong1,Cheng Jinwu1,Wang Peng2,Cheng Li1,Si Qiaorui2,Wang Chuan1,Shouqi Yuan2

Affiliation:

1. College of Hydyaulic Science and Engineering, Yangzhou University, Yangzhou, China

2. National Research Center of Pumps, Jiangsu University, Zhenjiang, China

Abstract

The side chamber flow has a fundamental influence on the performance and reliability of centrifugal pumps. However, the radial wall shear stress in the flow modeling of pump side chambers is arbitrarily neglected. The current work proposes a model for the radial wall shear stress, which is an extension of the previous paper (DOI: 10.1115/1.4047532). By using the power-law for the velocity boundary layer and the Blasius law for the wall shear stress, introducing the Ekman layer thickness expression, and deducing the Bödewadt layer thickness expression, the radial wall shear stress on the rotating and stationary disks is formulated and then integrated into the side chamber flow model. Besides, the entire flow field of the centrifugal pump is solved using the computational fluid dynamics (CFD) software ANSYS CFX. The radial wall shear stress calculated by the new side chamber flow model (NSCFM) is in the identical magnitude as CFD. Compared with pressure measurements, NSCFM makes better pressure predictions than CFD from the rear seal to the hub; however, in other areas, CFD results are closer to experimental data than NSCFM results. The flow prediction tools show that the volumetric efficiency and the shroud thrust increase with the increase in flow rate. NSCFM achieves a good compromise between calculation speed and desired accuracy.

Funder

National Natural Science Foundation of China

Postdoctoral Research Fund of Jiangsu Province, China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3