Investigations on surface roughness and tribology of miniature brass gears manufactured by abrasive water jet machining

Author:

Phokane Thobi1,Gupta Kapil2,Gupta Munish Kumar3ORCID

Affiliation:

1. Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg, South Africa

2. Department of Mechanical and Industrial Engineering Technology, University of Johannesburg, Johannesburg, South Africa

3. Department of Mechanical Engineering, National Institute of Technology Hamirpur, Hamirpur, India

Abstract

Surface roughness parameters are important indicators for determining the operating performance, tribology behavior, wear and tear characteristics, and service life of engineered parts including gears. This article presents the investigation on surface roughness, and tribology and wear aspects of miniature brass gears manufactured by abrasive water jet machining. Experiments have been conducted based on Taguchi's robust design technique with L9 orthogonal array to machine external spur-type miniature gears of brass having 8.4 mm pitch diameter, 12 teeth, and 5 mm thickness. The effect of three important process parameters namely water jet pressure, abrasive mass flow rate, and stand-off distance on mean roughness depth of miniature gears are analyzed. Surface roughness is found to decrease with the increase in the water jet pressure and abrasive mass flow rate, and increases with the increase in the stand-off distance. Particle swarm optimization technique has been used for parametric optimization to minimize the surface roughness of miniature gears. Confirmation experiment conducted at optimized abrasive water jet machining parameters resulted in superfine surface finish with mean roughness depth value of 4.1 µm superior than the finish obtained by other advanced processes for brass gears. The investigated values of bearing area characteristics, skewness, kurtosis, and friction coefficient confirm the tribological fitness of the miniature brass gear machined at optimum abrasive water jet machining parameters.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3