Application of an improved dynamic time synchronous averaging method for fault diagnosis in conditions of speed fluctuation and no tachometer

Author:

Xiao Huifang1,Zhou Xiaojun2,Shao Yimin3

Affiliation:

1. National Engineering Research Center of Flat Rolling Equipment, University of Science and Technology Beijing, Beijing, PR China

2. China Ship Research and Development Academy, Beijing, PR China

3. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, PR China

Abstract

Time synchronous averaging has been widely used for machinery fault diagnosis. However, it cannot reveal signal characteristics accurately in conditions of speed fluctuation and no tachometer due to the phase accumulation error. In this paper, an improved dynamic-time synchronous averaging method is proposed to extract the periodic feature signal from the fluctuated vibration signal for fault detection when no tachometer signal is available. In this method, empirical mode decomposition, dynamic time warping, and time synchronous averaging are performed on gear vibration signals to detect fault characteristic information. First, empirical mode decomposition is performed on the vibration signal and a series of intrinsic mode functions are produced. The sensitive intrinsic mode functions providing fault-related information are selected and reconstructed and the corresponding envelop signals are equal-space intercepted. Then, the phase accumulation error among the envelop signal segments is estimated by the dynamic time warping, which is further used to compensate the phase accumulation error between the intrinsic mode function segments of the reconstructed signal. Finally, the compensated intrinsic mode function segments are averaged to obtain the feature signal. Simulation analysis shows the advantages of the proposed method in extracting faulty feature signal from speed fluctuation signal without tachometer and identifying gear fault. Experiments with both normal and faulty gear were conducted and the vibration signals were captured. The proposed method is applied to identify the gear damage and the diagnosis results demonstrate its superiority than other methods.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3