Event-triggered adaptive control for upper-extremity therapeutic robot in active-assist mode: A simulation study

Author:

Abbas Mohamed12ORCID,Narayan Jyotindra1ORCID,Dwivedy Santosha K1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India

2. Department of Design and Production, Al-Baath University, Homs, Syria

Abstract

Upper extremity rehabilitation exercises are essential for individuals recovering from injuries or conditions that affect their arm and hand functionality. Robot-assisted therapy has gained popularity as it offers precise control, objective assessment, and customizable treatment programs. However, several challenges persist, including uncertainties in the patient’s and robot dynamics, limited communication, and the need to maintain a compliant patient-robot interaction. Therefore, an event-triggered adaptive backstepping (ETAB) admittance control strategy is proposed in this work to address these challenges. Initially, the framework of the robot-assisted therapeutic process is briefly explained. The architecture of the proposed control strategy is formulated with two control modules. Thereafter, the adaptive backstepping technique is employed with an online adaptation law to deal with dynamic uncertainties. Moreover, the problem of limited communication is handled using the proposed design of a Lyapunov-based event-triggered mechanism. The admittance controller is integrated to maintain a compliant patient-robot interaction and consider the participation of the patient in the therapeutic sessions. The effectiveness of the proposed control strategy is verified using an end-effector type rehabilitation robot performing two different rehabilitation exercises. Furthermore, a comparative performance analysis is carried out with the proportional-integral-derivative controller (PID) and the adaptive sliding mode controller (ASMC). Based on the simulation runs, the proposed controller has shown promising tracking behavior, appropriate compliant interaction, and considerable reduction in the transmitted signals during the passive and active-assist training exercises.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3