A visco-hyperelastic constitutive model of short- and long-term viscous effects on isotropic soft tissues

Author:

Matin Zahra1,Moghimi Zand Mahdi2ORCID,Salmani Tehrani Mehdi1,Wendland Brianna Regina3,Dargazany Roozbeh3

Affiliation:

1. Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran

2. Small Medical Devices, Bio-MEMS & LoC Lab, School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran

3. Department of Civil & Environmental Engineering, Michigan State University, East Lansing, MI, USA

Abstract

Understanding and modeling the constitutive behavior of soft tissues represents an important challenge with significant relevance in medicine and biology. In this paper, we propose a new visco-hyperelastic model to describe the constitutive behavior of soft tissues as an isotropic and homogeneous material. The model is based on the nonlinear framework of continuum mechanics. A generalized Rivlin strain energy and a short-term viscous strain energy are used to describe the elastic part and time-dependence viscous part, respectively, while a long-term viscous function is derived through an integral framework of the applied stretch. To calibrate the material parameters, a set of self-designed uniaxial compression and relaxation tests are carried out on cylindrical samples of bovine liver. Moreover, the model is also validated against the experimental data of synthetic tissues reported by Khan et al. The good agreement between the predicted results and experimental data establishes the relevance of the proposed model. To investigate the model reliability, we have developed a “user-defined materials” subroutine to implement the constitutive behavior of the liver tissue in ABAQUS. By using the model, we simulate in vitro bovine liver behavior under compression and in relaxation and study the relative effects of the hyperelastic and viscous components on liver biomechanics.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3