Evaluation of acoustic performance of cascaded cylindrical micro-perforated panel

Author:

Alisah Mohamad Izudin1ORCID,Ooi Lu Ean1,Ripin Zaidi Mohd1,Yahaya Ahmad Fazli2,Ho Kelvin2

Affiliation:

1. The Vibration Lab, School of Mechanical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia

2. Dyson Manufacturing Sdn. Bhd, Johor, Malaysia

Abstract

A cylindrical micro-perforated panel (MPP) can be used to absorb the sound of a flow system in a circular duct of a vacuum cleaner. A cascaded cylindrical MPP is a special class type where two cylindrical MPPs are arranged in a series to improve sound attenuation. The manufacturing of MPP primarily involves the machining of micro-perforations, because small holes are not readily made using injection moulding due to the complexity of the die, flow control of the molten polymer through the small orifices and dimensional stability, making it unsuitable for mass production. This limitation can be overcome with the use of additive manufacturing (AM) technology, where the micro-perforations can be designed and manufactured, with relatively larger tolerances. Experimental validation ensures that the manufactured prototype in this study is performed according to design. Results show that the transmission loss of the model and the experimental outcomes agree. The cascaded arrangement of the cylindrical MPP results in a wider effective frequency range and an increased transmission loss. Parametric studies of the combined effects of the perforation diameter, perforation ratio and the depth of air cavity on the diameter of the duct and length ratio are conducted using a transfer matrix method. A case study is demonstrated here in the design. Moreover, an AM of cascaded cylindrical MPP is performed to attenuate peak noise at 1650 Hz, where the optimum parameters of the cascaded cylindrical MPP are obtained using a genetic algorithm. The manufactured cascaded cylindrical MPP is installed on a vacuum cleaner duct, and the measurement of sound power level shows a reduction of 4 dB(A).

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3