Transient thermoelastic investigation of FGM composite plate with varying grading parameter

Author:

Sharma Rajesh1,Jadon Vijay Kumar2,Singh Balkar3,Sharma Neeraj4

Affiliation:

1. Punjab Technical University, Jalandhar, Punjab, India

2. Department of Mechanical Engineering, Chitkara University, Chandigarh, Punjab, India

3. College Development, Punjab Technical University, Jalandhar, Punjab, India

4. Department of Mechanical Engineering, D.A.V. University, Jalandhar, Punjab, India

Abstract

Functionally graded materials (FGM) are newly developed materials described by variation in the characteristics gradually over volume. These materials find applications in very high temperature environments namely aerospace industry, nuclear reactors, gas turbines, and electronics cooling. These materials are used in high temperature environments with dynamic load conditions, so their transient thermoelastic analysis under these conditions is necessary. In this paper, transient thermoelastic investigation of FGM is carried out using finite element method (FEM). The effect of temperature dependence is considered in the thermophysical properties of a FGM plate in the direction of its thickness. FEM is applied to solve the thermo mechanical equations and Newmark direct integration scheme is used for obtaining the solution for transient loading. This method improves the accuracy for three dimensional cases and produces solutions directly in time domain. A comparative study is made with some existing methods, and it is found that temperature and thermal stresses remain within safe limits at higher temperatures while preserving the deformation in the structure. The results show that the grading parameter has a dominating effect on transient thermoelastic behavior on FGM plate.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3