Affiliation:
1. Composite Design and Manufacturing Research Group, School of Engineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
Abstract
Woven fabric reinforced epoxy composite shown inherent favorable characteristics for aerospace industry applications. This paper comprehensively investigated the mechanical and fracture behavior of unidirectional carbon woven fabric reinforced epoxy composite using experimental and computational techniques. The composites were fabricated with two, four, and six ply laminates with cross-ply and inclined ply (45/–45) orientations. Laminates were fabricated using Vacuum-Assisted Resin Infusion Microwave Curing technique with a high fiber volume fraction of 50% for each laminate. Experimental analyses were performed to predict the behavior of composites under tensile, shear, and impact loading environment. Further, the mean-field homogenization technique coupled with the finite element method was employed to predict orthotropic material properties, fracture energy, and fracture parameters ( KIC and GIC) of the composite. The results showed that fracture energy obtained by the computational technique was in good agreement with experimental results. The values of GIC increased with the number of plies both for cross and inclined plies orientation composites. KIC values were higher for cross plies laminates than the inclined plies laminates.
Funder
Aeronautical Research Development Board (ARDB), India
Subject
Mechanical Engineering,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献