Nonlocal vibration analysis of the three-layered FG nanoplates subjected to applied electric potential considering thickness stretching effect

Author:

Arefi Mohammad1ORCID,Soltan Arani Amir Hossein1

Affiliation:

1. Faculty of Mechanical Engineering, Department of Solid Mechanics, University of Kashan, Kashan, Iran

Abstract

Comprehensive nonlocal piezoelasticity relations are developed in this paper for a sandwich functionally graded nanoplate subjected to applied electric potential based on higher-order shear and normal deformation theory. To account thickness stretching effect, the higher-order shear and normal deformation theory is developed. Based on this theory, the transverse deflection is decomposed into bending, shear and stretching portions in which the third term is reflected variation of transverse deflection along the thickness direction. Size dependency is accounted in governing equations based on nonlocal elasticity theory. The sandwich nanoplate is made of a functionally graded core integrated with two piezoelectric layers. Distribution of material properties are assumed according to the power-law function in the thickness direction. The Hamilton’s principle is used to derive governing equations of motion. Navier’s technique is implemented to solve partial differential equation of motion. Accuracy and efficiency of the presented technique are verified by a comparison between obtained results and existing results in literature for two cases including and excluding thickness stretching effect. The comparison between the results with and without thickness stretching effect can justify necessity of present work. Large parametric analysis is organized to investigate effect of significant parameters such as external applied voltage, nonlocal parameter, non-homogeneous index, stretching effect, length-to-thickness, length-to-width and core-to-face sheet thickness ratios on the vibrational behavior of the system. As an important result of this study, one can conclude that accounting thickness stretching effect leads to decrease of natural frequencies in comparison with cases disregards thickness stretching.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3