Research on anti-swing control strategies for three-dimensional overhead cranes with non-stationary enhanced swing angle suppression

Author:

Li Dong1ORCID,Xie Tianhu1ORCID,Zhang Lu2

Affiliation:

1. School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang, Liaoning, China

2. Department of Shenyang Build New Building Materials Co., Ltd, Shenyang, Liaoning, China

Abstract

In this paper, a non-stationary enhanced swing angle suppression control strategy is proposed to address the issue of excessive swinging angles during the transportation process of a three-dimensional overhead crane. Firstly, in response to the substantial non-stationary initial swing angle resulting from the abrupt increase in driving force during the startup of the overhead crane, we have devised a time-varying damping resistance model. This model is specifically designed to curtail the rapid force surge, subsequently diminishing the swing angle of the payload. Secondly, during the transport phase of the overhead crane, we have established an augmented coupling signal between the displacement tracking error and the payload swing angle tracking error. Drawing upon the principles of energy dissipation, we have devised a nonlinear sway controller. Next, the closed-loop stability of the control system is validated through the use of Lyapunov’s method and the LaSalle invariance principle. Finally, the proposed control strategy’s effectiveness has been substantiated through simulation analysis and physical experiments. This approach not only proves capable of effectively suppressing excessive payload swing angles during the transportation process of the overhead crane but also facilitates the rapid and precise positioning of the payload. This significantly enhances the efficiency of the overhead crane’s transport operations.

Funder

Basic Scientific Research Project of Liaoning Provincial Department of Education

Liaoning Provincial Department of Education 2023 Basic Scientific Research Project

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3