Research on Internal Flow and Performance of Swirlmeter with Different Swirler Cone Angle

Author:

Chen Desheng1,Cui Baoling1,Zhu Zuchao1

Affiliation:

1. Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China

Abstract

The performance of a swirlmeter (or vortex precession flowmeter) was numerically and experimentally evaluated. With methods from computational fluid dynamics, the flow fields of the swirlmeter were analyzed, revealing their flow characteristics. To obtain detailed flow information with the Re-Normalization Group k –  ε turbulence model and SIMPLE arithmetic, which couples pressure and velocity, the three-dimensional unsteady incompressible flow of a swirlmeter was numerically simulated. By varying the cone angle of the swirler, the performance of the swirlmeter was analyzed. The results show that the pressure fluctuation frequency inside has a linear response to flow rate, and the swirlmeter achieves high accuracy over a large measurement range. The pressure fluctuation near the region between throat and diffusor was stronger than other regions offering then an ideal location to mount the piezoelectric sensors. Different swirler cone angles were shown to influence both pressure drop and fluctuation; smaller cone angles produced higher frequency fluctuations but larger pressure loss.

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3