Observer-based distributed convex optimization of bipartite containment control for higher order nonlinear uncertain multi-agent systems

Author:

Hao Lihui1ORCID,Hu Shengbin1,Yuan Jiaxin1ORCID,Yang Xiaole1

Affiliation:

1. School of Air Transportation, Shanghai University of Engineering Science, Shanghai, China

Abstract

This paper studies the distributed convex optimization of bipartite containment control problem for a class of higher order nonlinear multi-agent systems with uncertain states. For the optimization problem, the penalty function is constructed by summing the local objective function of each agent and combining the penalty term formed by the adjacency matrix. For the unknown nonlinear function and unpredictable states in the system, this paper construct radial basis function Neural-networks and state observer for approaching, respectively. In order to avoid “explosion of complexity,” under the framework of Lyapunov function theory, we propose the dynamic surface control (DSC) technology and design the distributed adaptive backstepping neural network controller to ensure all the signals remain semi-global uniformly ultimately bounded in the closed-loop system and all agents can converge to the convex hull containing each boundary trajectory as well as its opposite trajectory different in sign. Simulation results confirm the feasibility of the proposed control method.

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3