Influence of sensor installation tilt angle on explosion shock wave pressure test

Author:

Wang Liangquan1ORCID,Kong Deren1

Affiliation:

1. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, China

Abstract

The surface reflection pressure sensor installation flatness will directly lead to the change of the explosion shock wave pressure propagation and distribution law, affecting the test results accuracy, and the test data cannot accurately evaluate the ammunition explosion damage power. In this study, the numerical simulation model of the explosion shock wave pressure propagation and distribution law was established by using the explosive mechanics simulation software, and the pressure distribution law was studied when the sensors installation angles were 0°, 4°, 8°, 12°, −4°, −8°, and −12° respectively. Combined with analysis of the pressure peak value and the pressure evolution nephogram at different measuring points, it is clarified that the positive tilt angle of the sensor installation has an enhancing effect on the pressure peak, while the negative tilt angle has a attenuation effect on the pressure peak. Based on the calculation function formula of the surface reflected pressure peak value in the national defense engineering design code, the surface reflected pressure peak value correction function formula is established by introducing the sensor installation angle correction effect. This study results provide a theoretical basis for the design of ammunition explosion shock wave pressure engineering test scheme and the test data validity verification.

Funder

Key Basic Research Projects of the Basic Strengthening Program

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of Multifunctional Shock Wave Overpressure Acquisition System;2023 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics);2023-12-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3