Affiliation:
1. Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
2. Zhejiang Testing & Inspection Institute for Mechanical and Electrical Products Quality Co.,Ltd, Hangzhou, China
3. Hangzhou Oxygen Plant Group Co., Ltd., Hangzhou, China
Abstract
The swirl meter is one of the gas flow meters used in the industry. Its advantages are as follows: a strong signal level, easy maintenance, and stable performance. Hence, it has become widely accepted for natural gas metering. In this study, the numerical computation of the three-dimensional unsteady flow in a swirl meter was conducted using the renormalization group k–ε turbulence model and SIMPLE algorithm. The internal flow fields were analyzed in detail, wherein the velocity and pressure distributions were discussed under six flow rates (6, 15, 25, 40, 70, and 100 m3/h) and three swirl cone angles (11°, 20°, and 30°). The obtained results are reported and discussed as follows: the stable performance of the swirl meter was due to its capacity to maintain its internal characteristics over a large flow range. Also, it was detected that though the pressure decrease was gradual on the wall, an opposite tendency was shown at the center. On the other hand, the swirler structure was crucial to the metering capacity of the swirl meter, and the swirler cone angle influenced the pressure and velocity.
Funder
zhejiang province public welfare technology application research project
National Natural Science Foundation of China
sci-tech academy, zhejiang university
Subject
Applied Mathematics,Control and Optimization,Instrumentation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献