Temperature compensation for quartz flexible accelerometer based on nonlinear auto-regressive improved model

Author:

Wang Xin1ORCID,Zhang Chunxi1,Song Lailiang1,Ran Longjun1,Xiao Tingyu1

Affiliation:

1. School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China

Abstract

Temperature variation is an important factor affecting the performance of Quartz flexible accelerometer (QFA). Performance deterioration of QFA degrades the navigation accuracy of inertial navigation system (INS). Normally dramatic change in temperature causes both thermal effect and severe creep effect on the performance of QFA. Previous papers have proved that part of errors caused by thermal effect can be restrained through simple temperature compensation. However, error caused by severe creep effect is seldom considered. In this paper, creep effect and thermal effect in QFA are detailed analyzed, respectively. Furthermore, based on the analysis of thermal effect and creep effect, the novel temperature model based on nonlinear auto-regressive with external input (NARX) improved by wavelet transform (WT) is proposed to address the retardation problem caused by thermal effect. Creep error causing the ruleless deformation of QFA’s structure is separated from overall errors, and only the thermal error whose effect has strong relationship with temperature is compensated by proposed model. Moreover, a 4-point dumpling experiment in temperature control oven is conducted to train and verify the proposed temperature model. The result of the comparative experiments shows that the performance of proposed method is the best among the comparative models. The compensation result based on proposed method improves stability of 1 g output from 776 to 14.6 µg. The proposed temperature compensation method improves the performance of QFA effectively and feasibly, which could be promoted to other applications of INS in temperature changing environment.

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Reference24 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3