An accurate identification method of the position of a broken tooth in the joint steering gear of service robot

Author:

Shi Zhaoyao1,Zhang Pan1,Yue Huijun1ORCID,Lin Jinyu1,Ding Hongyu1

Affiliation:

1. Beijing Engineering Research Center of Precision Measurement Technology and Instruments, Beijing University of Technology, Beijing, China

Abstract

The gearbox of the small joint steering gear of a service robot is characterized by a compact structure, a large reduction ratio, and a special manufacturing and assembling technology. However, when a tooth in the gear is broken, the gear transmission can be still maintained, so it is difficult to identify the broken tooth accurately. In order to provide a theoretical basis for the identification of a broken tooth in the study, the influence of gear tooth fracture on the time-varying meshing stiffness in the transmission process was firstly analyzed theoretically and its influencing mechanisms on the time domain and frequency domain characteristics of transmission error (TE) were further analyzed. Then, the TE measurement test bench of the joint steering gear was designed. The signal-to-noise ratios and root-mean-square errors of the TE data processed by wavelet noise reduction, Kalman filtering and combined wavelet-Kalman filtering algorithms were compared and analyzed. The analysis results showed that the joint algorithm had the best performance. Next, the TE data measured under multiple working conditions were processed with the joint filtering algorithm to obtain the time domain results and then the frequency domain results were obtained by Fourier transform. Whether there was a broken tooth in the joint steering gear could be judged based on the difference between the maximum and minimum values of the TE in the time domain. The broken-tooth gear shaft could be positioned based on the frequency of TE mutation waveform. Furthermore, combined with the frequency domain, the accurate identification of the position of the broken gear can be realized. Finally, the accurate positioning method of broken teeth was applied in the product inspection process. Broken teeth were successfully identified and located, thus proving the effectiveness of the identification method.

Funder

The National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3