Modeling and simulation of a fuzzy heat distribution controlled high-voltage DC resistive divider

Author:

Yilmaz Serhat1,Kilci Sadettin Burak1ORCID

Affiliation:

1. Engineering Faculty, Department of Electronics and Communication Engineering, Kocaeli University, İzmit, Turkey

Abstract

In order to improve quality in manufacturing, the measuring instruments used in production process should regularly be monitored and corrected according to international or national standards. Calibration of high-voltage equipment and precise measurements of DC high voltages are accomplished by standard voltage divider. Self-heating effect is the main error source of measurement in high-voltage DC resistive dividers. Therefore, precise control systems should be designed to keep stability of the ambient temperature and to regulate the heat distribution along the high-voltage DC resistive divider. For this purpose, a heat controlled resistive divider whose input voltage ( Vin) is up to 5 kV was designed. This study is focused on heat convention and the dissipation model of the resistive divider and executes some control simulations under various conditions that aim to find the appropriate control method. Responses of the high-voltage DC resistive divider model are compared with and are validated by the responses of the designed actual system. The model provides us faster analyze and design solutions for novel methods. In this way, analyzing and controlling higher voltage dividers, such as 100 KV, will reduce just into a parameter change on the model. The fuzzy control method is suggested since the system dynamic has non-linear characteristics. Fuzzy temperature difference controller keeps temperature at a certain degree where fuzzy vertical temperature gradient controller keeps vertical temperature gradient around zero. Actual system and model responses for the fuzzy control are compared and interpreted.

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Reference46 articles.

1. Dual Highly Stable 150-kV Divider

2. Calibration of DC Voltage Dividers up to 100 kV

3. Special shielded resistor for high-voltage d-c measurements

4. Deacon TA. Intercomparison measurement of the ratios of a 100 Kilovolt DC voltage divider (BCR Information Applied Metrology, EUR10178EN), Brussels; pp. 1–23.

5. Interlaboratory comparison of high direct voltage resistor dividers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3