Investigation on micro-residual stress distribution near hole using nanoindentation: Effect of drilling speed

Author:

Tiwari Abhishek Kumar1ORCID,Kumar Amit2,Kumar Navin2,Prakash Chander3ORCID

Affiliation:

1. Department of Applied Mechanics, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India

2. Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, India

3. School of Mechanical Engineering, Lovely Professional University, Phagwara, India

Abstract

Residual stresses are induced in the material during manufacturing operations, which considerably affect the fatigue performance and the lifespan of a mechanical work piece. The nature, magnitude, and distribution of residual stresses decide their beneficial or detrimental effects. Past research efforts concluded that mechanical process parameters influence residual stress nature, distribution, and the magnitude. Nevertheless, how residual stress generation depends on the process parameters, is not well investigated especially in the case of a drilling operation. In fact, the residual stress field is required to be regulated near drilled holes to improve the fatigue strength of structural joints, especially in the aircraft industry. Accordingly, this work attempts to estimate the drilling-induced micro-residual stress distribution near the drilled hole. In addition, the effect of drilling speed on residual stress distribution has also been studied. A nanoindentation technique is used to follow-up precise distribution of micro-residual stresses near the holes drilled at three different drilling speeds of 700, 900, and 1100 r/min. The outcomes indicate the presence of compressive residual stresses near the hole. In addition, an increase in residual stress level is noticed with an increase in the drilling speed up to 900 r/min. A uniform distribution of residual stresses is observed near the hole when drilled at a higher drilling speed of 1100 r/min. These findings may be useful in planning an improved drilling operation to produce beneficial residual stress distribution. This may ultimately improve the fatigue strength and the service life of mechanical components or structures with drilled holes.

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3