Dynamic interception point guidance algorithm based on particle swarm optimization

Author:

Chen Yi-Wei1ORCID

Affiliation:

1. Department of Mechanical Engineering, Air Force Institute of Technology, Kaohsiung City, Taiwan

Abstract

The engagement of target-interceptor is an extremely complicated and nonlinear problem. Most literatures of developed guidance algorithms are hard to work in real-time missile guidance systems because of the complicated design of controllers, restriction in specific condition or excess computing loading. In this paper, the proposed guidance algorithm computes the predicted interception point of target-interceptor and applies particle swarm optimization to optimize the lateral acceleration control commands of missile where the definition of fitness function can guide the missile toward the predicted interception point when the computed fitness value is the minimum. According to the results of simulation experiments, the proposed method has the satisfied target-kill performance to the superior aircraft with high agility. The missile can greatly revise the flight route toward the computed collision course at the initial pursuit stage and the course curve of missile is flatter than the other two guidance laws. Besides, the proposed method can reduce the occurrence of big lateral acceleration control commands acting on the missile to avoid unlocking the evasive target at the terminal stage. As a result, the proposed guidance algorithm based on particle swarm optimization is very effective without using the complicated nonlinear control methods and excess storage burden of computer. It is a simple and feasible missile guidance algorithm due to the advantages of simplicity and effectiveness just like the proportional navigation guidance law but the performance of proposed guidance algorithm is better than proportional navigation guidance law and the other guidance algorithm designed by particle swarm optimization.

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling and simulation of complex emergency dispatch based on BIPSO;International Journal for Simulation and Multidisciplinary Design Optimization;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3