Intelligent high-type control based on evolutionary multi-objective optimization

Author:

Zhang Hanwen1234,Liu Qiong12,Mao Yao12ORCID

Affiliation:

1. Key Laboratory of Optical Engineering, Chinese Academy of Sciences, Chengdu, China

2. Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, China

3. School of Electrical, Electronic and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China

4. National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, China

Abstract

In this paper, we formulate high-type intelligent control as a multi-objective problem and apply evolutionary algorithms to search for optimal solutions. Specifically, we consider the metrics of the system in both the frequency domain and the time domain. Integrated time and absolute error is used as a performance metric in the time domain, while bandwidth is used as a measure in the frequency domain. Simultaneously, the amplitude margin and phase margin are used as constraints to ensure the stability of the high-type control system. Then, we adopt evolutionary algorithms to solve the formulated multi-objective problem. Unlike most of the existing approaches, we formulate intelligent high type control as a multi-objective optimization problem based on our knowledge about the control system. Furthermore, evolutionary algorithms are adopted to search for optimal solutions to real-world controlling systems. Extensive experiments are conducted to evaluate the effectiveness of our proposed approach. Compared to the Z-N method and the extending symmetrical optimum criterion, our proposed method achieves an improvement in bandwidth of more than 126.6%, while reducing the overshoot by more than 56.8% and the settling time by more than 48.4% for all controlled objects used in the experiments. At the same time, the tracking errors of the ramp and parabolic signals are significantly reduced, which means this method effectively improves the system performance.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3