Field data–driven online prediction model for icing load on power transmission lines

Author:

Chen Yong1,Li Peng1ORCID,Ren Wenping1,Shen Xin2,Cao Min2

Affiliation:

1. School of Information, Yunnan University, Kunming, China

2. Electric Power Research Institute, Yunnan Power Grid Corp., Kunming, China

Abstract

Methods for the accurate prediction of icing loads in overhead transmission lines have become an important research topic for electrical power systems as they are necessary for ensuring the safety and stability of power-grid operations. Current machine learning models for the prediction of icing loads on transmission lines are afflicted by the following issues: insufficient prediction accuracy, high randomity in the selection of kernel functions and model parameters, and a lack of generalizability. To address these issues, we propose a field data–driven online prediction model for icing loads on transmission lines. First, the effects of the type of kernel function used in the support vector regression algorithm on the prediction accuracy of the model were analyzed using micrometeorological data and icing data collected by on-site monitoring systems. The particle swarm optimization algorithm was then used to optimize and determine the model parameters such as penalty coefficients. An offline support vector regression prediction model was thus constructed. Using the accurate online support vector regression algorithm, the weighting coefficients of the samples were dynamically adjusted to satisfy the Karush–Kuhn–Tucker conditions, which allowed online updates to be made to the regression function and prediction model. Finally, a simulation analysis was performed using actual icing incidents that occurred in a transmission line of the Yunnan Power Grid, which demonstrated that our model can make online predictions for the icing load on transmission lines in actual applications. Our model proved to be superior to conventional icing-load prediction models with regard to the single-step and multi-step prediction accuracies and generalizability. Hence, our prediction model will improve the decision-making processes regarding the deicing and maintenance of power transmission and transformation systems.

Funder

National Natural Science Foundation of China

Applied Basic Research Key Project of Yunnan

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3