A comparative study of machine learning methods for identifying the 15 CIE standard skies

Author:

Aghimien Emmanuel I12ORCID,Li Danny HW1,Tsang Ernest KW2ORCID,Agbajor Favour D3ORCID

Affiliation:

1. Building Energy Research Group, Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China

2. Department of Construction Management and Quantity Management, Hong Kong Metropolitan University, Hong Kong SAR, China

3. Department of Construction Management and Quantity Surveying, Durban University of Technology, Durban, South Africa

Abstract

For energy-efficient building designs, the solar irradiance and daylight illuminance derived from the CIE standard skies are useful. Over time, the sky luminance distributions have been used to identify these standard skies, but these are sparingly measured. Thus, the use of available climatic variables has become a viable alternative. Nevertheless, it is necessary to determine if these climatic variables could correctly identify these skies. This study addresses the lack of luminance distribution measurement by classifying the standard skies using measured climatic data in Hong Kong. The classification approach was improved by using the machine learning (ML) method. For comparative analysis, five popular ML classification algorithms i.e., decision tree (DT), k-nearest neigbhour (KNN), light gradient boosting machine (LGBM), random forest (RF) and support vector machines (SVM) were used. The findings show that accuracies of 68.1, 73.1, 74.3, 74.5, and 75.4% were obtained for the DT, KNN, SVM, LGBM, and RF models, respectively. Similarly, the F1 scores were 66.6, 70.2, 71.8, 72.1 and 72.9%, for the DT, KNN, SVM, LGBM, and RF models. The result shows that the RF model gave the best performance while DT performed the least. Also, the obtained accuracies and F1 scores show that all models would classify the standard skies with reasonable accuracy. Furthermore, feature importance was done, and it was found that Kd, Tv, Kt, α, sun, and cld are the most important input parameters for sky classification. Lastly, vertical solar irradiance ( GVT) and illuminance ( GVL) were estimated using the skies predicted by the proposed models. Upon predictions, it was observed that the GVT ranged from 14.7 to 24.6% while the GVL from 13.8 to 19.9%. Generally, most of the predictions were less than 20%, which shows good predictions were obtained from the models.

Funder

Research Grants Council of the Hong Kong Special Administrative Region, China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3