Survivin Promoter-Driven DFF40 Gene Expression Sensitizes Melanoma Cancer Cells to Chemotherapy

Author:

Minaiyan Ghazale1,Shafiee Fatemeh2,Akbari Vajihe2ORCID

Affiliation:

1. Student Research Committee, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran

2. Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran

Abstract

Downregulation of the apoptotic protein DNA fragmentation factor 40 (DFF40) is correlated with poor overall survival in some malignancies, including melanoma. In this study, DFF40 gene expression driven by survivin promoter, a tumor-specific promoter, was used to selectively induce cytotoxicity in melanoma cells. The activity and strength of survivin promoter were examined in B16F10 murine melanoma, and L929 murine normal fibroblast cell lines using enhanced green fluorescent protein reporter assay and reverse transcription polymerase chain reaction. The effect of expression of DFF40 under the control of cytomegalovirus (CMV) or survivin promoter on viability of cancerous and normal cells was determined by MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] assay. Apoptosis induction by expression of DFF40 was evaluated using Annexin-V/propidium iodide staining. Our findings showed high activity of survivin promoter comparable to the control promoter (ie, CMV) in melanoma cells, while survivin activity in normal cells was negligible. Survivin promoter-derived DFF40 gene expression led to selective inhibition of cell viability and induction of apoptosis in cancerous cells. Low and sublethal concentrations of a chemotherapeutic drug, dacarbazine, significantly enhanced the growth inhibitory effect of DFF40 gene therapy. Combination of survivin-driven gene therapy and chemotherapy could be considered as a potential therapeutic treatment for melanoma and possibly other malignancies with similar features.

Funder

Isfahan University of Medical Sciences

Publisher

SAGE Publications

Subject

Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3