Nanosecond and sub-nanosecond laser-assisted microscribing of Cu thin films in a salt solution

Author:

Shiby Sooraj1ORCID,Vasa Nilesh J1ORCID,Shigeki Matsuo2ORCID

Affiliation:

1. Department of Engineering Design, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India

2. Department of Mechanical Engineering, Shibaura Institute of Technology, Tokyo, Japan

Abstract

Pulsed laser-based material removal is a preferred technique for microscribing of copper (Cu) film coated on polymers, as the pulse width limits the heat diffusion. However, experimental studies have shown that microscribing of Cu in air results in recast/redeposit formation and oxidation. Although the water medium can reduce these effects to a certain extent, the material removal rate is lesser for Cu. This article reports the influence of laser pulse duration on a hybrid method to enhance the pulsed laser-assisted microscribing of a copper thin film in the presence of an environmentally friendly sodium chloride salt solution (NaCl). The focused laser beam irradiation of Cu film results in ablation with a temperature of the zone well above the boiling point of Cu, which in turn, can assist in accelerating the chemical reaction. In this hybrid scribing technique, along with laser-based material removal, laser-activated chemical etching also helps in removing the material selectively. A sub-nanosecond laser with a pulse width of 500 ps (picosecond [ps] laser) and a nanosecond laser with a pulse width of 6 ns (nanosecond [ns] laser), with a wavelength of 532 nm, are used to understand the influence of laser pulse duration on this hybrid material removal mechanism. Hybrid microscribing with the ps- and ns lasers in salt solution resulted in an increase in the channel depth by ≈5 µm and ≈9 µm, respectively, compared to the channel depth obtained in deionized water. The theoretical model shows that during the ns laser ablation, the cooling rate is slower, resulting in a high temperature in the ablation zone for a longer duration and improved material removal.

Publisher

SAGE Publications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3