Strain softening observed during nanoindentation of equimolar-ratio Co–Mn– Fe–Cr–Ni high entropy alloy

Author:

Owhal Ayush12ORCID,Belwanshi Vinod3,Roy Tribeni14ORCID,Goel Saurav45ORCID

Affiliation:

1. Birla Institute of Technology and Science Pilani, Rajasthan, India

2. Department of Mechanical Engineering, SD Bansal College, Indore, India

3. CSIR − National Metallurgical Laboratory, Jamshedpur, India

4. School of Engineering, London South Bank University, London, United Kingdom

5. Department of Mechanical Engineering, University of Petroleum and Energy Studies, Dehradun, India

Abstract

This research article presents an atomistic study on the cyclic nanoindentation of an equimolar-ratio Co–Mn–Fe–Cr–Ni high-entropy alloy (HEA) using molecular dynamics simulation. The study investigated the effects of indentation depth on the cyclic load versus the indentation depth of the HEA. The results showed that the cyclic response exhibits a pronounced shift towards plasticity with pile-up formation instead of sinking behavior at higher indentation depths. Within the realm of molecular dynamics simulations, the simulated hardness value reached up to 16 GPa for the initial indentation cycle. A steep drop in the load–displacement curve was observed during the elastic–plastic transition, signifying substantial strain softening of the substrate. It was found that the densely clustered stacking faults undergo a reverse transition during cyclic loading, contributing to the backpropagation phase responsible for elastic recovery despite subsequent strain hardening. The study provides important insights into the underlying mechanisms governing the cyclic mechanical behavior of HEAs to guide their improved micromanufacturing.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3