Affiliation:
1. Department of Mechanical Engineering, Indian Institute of Technology Palakkad, Kerala, India
Abstract
This study aims to create an image processing algorithm that categorises the wire electric discharge machine (WEDM) processed finish cut surfaces, based on surface microdefects. The algorithm also detects the defect locations and suggests alternate parameter settings for improving the surface integrity. The proposed automated analysis is more precise, efficient and repeatable compared to manual inspection. Also, the method can be used for automatic data generation to suggest parameter changes in closed loop systems. During the training phase, mean, standard deviation and defect area fraction of enhanced binary images are extracted and stored. The training dataset consists of 27 WEDM finish cut surface images with labels, ‘coarse’, ‘average’ and ‘smooth’. The trained model is capable of categorising any machined surface by detecting the microdefects. If the machined surface image is not classified as a smooth image, then alternate input parameter settings will be suggested by the model to minimise the microdefects. This is done based on the Euclidean distance between the current image datapoint and the nearest ‘smooth’ class datapoint.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献