The Use of Cellulose Sample for Material's Flammability and Pyrolysis Tests

Author:

Daikoku M.1,Venkatesh S.1,Saito K.1

Affiliation:

1. Combustion and Fire Research Laboratory Dept. of Mechanical Engineering University of Kentucky Lexington, KY 40506-0108

Abstract

During transient pyrolysis tests of charring and non-charring materials, we noticed that sample preparation is crucial to obtain reliable data, on which theoretical models are based. Different researchers use different sam ple preparation techniques which some time causes disagreement in the results and create ambiguity when test results are compared. In this paper, we propose a bench mark sample preparation technique to clarify the experimen tal ambiguity and establish a reliable/common data base. Pyrolysis tests were performed by exposing PMMA, douglas-fir particle board (DFPB), and cellulose samples to external radiant heat using quartz and cone heaters. The cellulose sample is suggested for its homogeneity and combustion characteristics simi lar to natural wood in order to eliminate a variety of experimental uncertain ties due to inhomogeneity of particle board and wood samples for use in pyroly sis tests. Temperatures were measured at the front and back surfaces and at other intermediate locations using fine thermocouples. Thermal conductivity of DFPB and cellulose was then approximated from the measured temperature distributions as the sum of a linear temperature dependent term and a radia tion penetration effect into the pourous structure in the pre-lyrolysis zone. Ef fect of in-depth radiation absorption through the surface of the PMMA samples was estimated for various external radiant heat flux values; and it was found that in-depth radiation is an important factor in controlling the rate of heat transfer into the sample.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3