Early Detection of Metabolic Changes Using Microdialysis During and After Experimental Kidney Transplantation in a Porcine Model

Author:

Fonouni Hamidreza1,Esmaeilzadeh Majid1,Jarahian Parvin1,Rad Morva Tahmasbi1,Golriz Mohammad1,Faridar Alireza1,Hafezi Mohammadreza1,Jafarieh Shadi1,Kashfi Arash1,Yazdi Seid Hashem Fani1,Soleimani Mehrdad1,Longerich Thomas2,Shevchenko Maxim1,Sakowitz Oliver3,Schmidt Jan1,Mehrabi Arianeb1

Affiliation:

1. Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany

2. Department of Pathology, University of Heidelberg, Heidelberg, Germany

3. Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany

Abstract

Background: Microdialysis (MD) can detect organ-related metabolic changes before they become measurable in plasma through the biochemical parameters. This study aims to evaluate the early detection of metabolic changes during experimental kidney transplantation (KTx). Material and methods: During preparation of 8 donor kidneys, one MD catheter was inserted in the renal cortex and samples were collected. After a 6-hour cold ischemia time (CIT), kidneys were implanted in the 8 recipient pigs. Throughout the warm ischemia time (WIT) and after reperfusion, kidneys were monitored. The interstitial glucose, lactate, pyruvate, glutamate, and glycerol concentrations were evaluated. Results: A significant decline in glucose level was observed at the end of CIT. The lactate level was reduced to the minimum point of 0.35 ± 0.08 mmol/L in CIT. After reperfusion, lactate values raised significantly. During the WIT, the pyruvate level increased, continued until the end of the WIT. For glutamate, a steady increase was noted during explantation, CIT, WIT, and early reperfusion phases. The increase of glycerol value continued in the early postreperfusion, which was then followed by a sharp decline. Conclusion: MD is a fast and simple minimally invasive method for measurement of metabolic substrates in renal parenchyma during KTx. MD offers the option of detecting minor changes of interstitial glucose, lactate, pyruvate, glutamate, and glycerol in every stage of KTx. Through the use of MD, metabolic changes can be continuously monitored during the entire procedure of KTx.

Publisher

SAGE Publications

Subject

Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3