Effects of Adipokines and Insulin on Intracellular pH, Calcium Concentration, and Responses to Hypo-Osmolarity in Human Articular Chondrocytes from Healthy and Osteoarthritic Cartilage

Author:

Sánchez Julio C.1,López-Zapata Diego F.1

Affiliation:

1. Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Colombia

Abstract

Objective: To evaluate the effects of adipokines and insulin on intracellular calcium concentration ([Ca2+]i) and pH (pHi) in human articular chondrocytes from healthy (CHC) and osteoarthritic cartilage (COC). Design: pHi and [Ca2+]i were measured using BCECF and Fura-2 fluorometric probes in CHC and COC under control conditions and following a hypotonic shock. The effects of interleukin-1β (IL1β), tumor necrosis factor-α (TNFα), insulin, leptin, resistin, and adiponectin were assessed. Results: pHi was lower in COC than in CHC. Only IL1β β decreased pHi in both cell types; all the agents enhanced pHi recovery following an ammonium prepulse in CHC, effect that was attenuated by Na+–H+ exchanger inhibitors, but they had no effect in COC. Hypotonic shock (HTS) caused a pHi increase, which was significantly smaller in COC. All the hormones attenuated this response and the effect of IL1β was greater. The basal [Ca2+]i was similar in COC and CHC; IL1β, TNFα, and insulin increased the [Ca2+]i, but leptin, resistin, and adiponectin did not. These effects were greater in COC. This [Ca2+]i increase was dependent on extracellular Ca2+ and attenuated by Na+–Ca2+ exchanger inhibitors. HTS caused a [Ca2+]i increase, which was inhibited by transient receptor potential vanilloid blockers and attenuated by all the hormones tested with the exception of adiponectin. Conclusions: These findings may help explain the association between obesity and osteoarthritis, in which these hormones are altered. The responses of CHC and COC are different, which suggests that a modification of pH and Ca2+ homeostasis is part of the osteoarthritis pathophysiology.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Biomedical Engineering,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3