Characterization of Articular Cartilage Recovery and Its Correlation with Optical Response in the Near-Infrared Spectral Range

Author:

Afara Isaac Oluwaseun123,Singh Sanjleena4,Moody Hayley2,Zhang Lihai5,Oloyede Adekunle23

Affiliation:

1. Department of Electrical and Computer Engineering, Faculty of Engineering, Elizade University, Ilara-Mokin, Ondo, Nigeria

2. School of Chemistry, Physics, and Mechanical Engineering, Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia

3. Research and Innovation Centre, Elizade University, Ilara-Mokin, Ondo State, Nigeria

4. Central Analytical Research Facility, Institute of Future Environment, Queensland University of Technology, Brisbane, Queensland, Australia

5. Department of Infrastructure Engineering, University of Melbourne, Melbourne, Victoria, Australia

Abstract

Objectives: In this study, we examine the capacity of a new parameter, based on the recovery response of articular cartilage, to distinguish between healthy and damaged tissues. We also investigate whether or not this new parameter correlates with the near-infrared (NIR) optical response of articular cartilage. Design: Normal and artificially degenerated (proteoglycan-depleted) bovine cartilage samples were nondestructively probed using NIR spectroscopy. Subsequently they were subjected to a load and unloading protocol, and the recovery response was logged during unloading. The recovery parameter, elastic rebound ( ER), is based on the strain energy released as the samples underwent instantaneous elastic recovery. Results: Our results reveal positive relationship between the rebound parameter and cartilage proteoglycan content (normal samples: 2.20 ± 0.10 N mm; proteoglycan-depleted samples: 0.50 ± 0.04 N mm for 1 hour of enzymatic treatment and 0.13 ± 0.02 N mm for 4 hours of enzymatic treatment). In addition, multivariate analysis using partial least squares regression was employed to investigate the relationship between ER and NIR spectral data. The results reveal significantly high correlation ( R2cal = 98.35% and R2val = 79.87%; P < 0.0001), with relatively low error (14%), between the recovery and optical response of cartilage in the combined NIR regions 5,450 to 6,100 cm−1 and 7,500 to 12,500 cm−1. Conclusion: We conclude that ER can indicate the mechanical condition and state of health of articular cartilage. The correlation of ER with cartilage optical response in the NIR range could facilitate real-time evaluation of the tissue’s integrity during arthroscopic surgery and could also provide an important tool for cartilage assessment in tissue engineering and regeneration research.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Biomedical Engineering,Immunology and Allergy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3