Affiliation:
1. Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
Abstract
This paper applies an extension of classical averaging methods to hybrid dynamical systems, thereby achieving formally specified, physically effective and robust instances of all virtual bipedal gaits on a quadrupedal robot. Gait specification takes the form of a three parameter family of coupling rules mathematically shown to stabilize limit cycles in a low degree of freedom template: an abstracted pair of vertical hoppers whose relative phase locking encodes the desired physical leg patterns. These coupling rules produce the desired gaits when appropriately applied to the physical robot. The formal analysis reveals a distinct set of morphological regimes determined by the distribution of the body’s inertia within which particular phase relationships are naturally locked with no need for feedback stabilization (or, if undesired, must be countermanded by the appropriate feedback), and these regimes are shown empirically to analogously govern the physical machine as well. In addition to the mathematical stability analysis and data from physical experiments we summarize a number of extensive numerical studies that explore the relationship between the simple template and its more complicated anchoring body models.
Subject
Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献