Dec-MCTS: Decentralized planning for multi-robot active perception

Author:

Best Graeme1,Cliff Oliver M1,Patten Timothy12,Mettu Ramgopal R3,Fitch Robert14

Affiliation:

1. Australian Centre for Field Robotics (ACFR), The University of Sydney, Sydney, Australia

2. Automation and Control Institute, Vienna University of Technology, Vienna, Austria

3. Department of Computer Science, Tulane University, New Orleans, LA, USA

4. Centre for Autonomous Systems, University of Technology Sydney, Sydney, Australia

Abstract

We propose a decentralized variant of Monte Carlo tree search (MCTS) that is suitable for a variety of tasks in multi-robot active perception. Our algorithm allows each robot to optimize its own actions by maintaining a probability distribution over plans in the joint-action space. Robots periodically communicate a compressed form of their search trees, which are used to update the joint distribution using a distributed optimization approach inspired by variational methods. Our method admits any objective function defined over robot action sequences, assumes intermittent communication, is anytime, and is suitable for online replanning. Our algorithm features a new MCTS tree expansion policy that is designed for our planning scenario. We extend the theoretical analysis of standard MCTS to provide guarantees for convergence rates to the optimal payoff sequence. We evaluate the performance of our method for generalized team orienteering and online active object recognition using real data, and show that it compares favorably to centralized MCTS even with severely degraded communication. These examples demonstrate the suitability of our algorithm for real-world active perception with multiple robots.

Funder

Australian Research Council

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 111 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3