Toward Efficient Trajectory Planning: The Path-Velocity Decomposition

Author:

Kant Kamal1,Zucker Steven W.1

Affiliation:

1. Computer Vision and Robotics Laboratory Department of Electrical Engineering McGill University Montréal, Québec, Canada H3A2A7

Abstract

We present a novel approach to solving the trajectory plan ning problem (TPP) in time-varying environments. The es sence of our approach lies in a heuristic but natural decom position of TPP into two subproblems: (1) planning a path to avoid collision with static obstacles and (2) planning the velocity along the path to avoid collision with moving obsta cles. We call thefirst subproblem the path planning problem (PPP) and the second the velocity planning problem (VPP). Thus, our decomposition is summarized by the equation TPP => PPP + VPP. The symbol => indicates that the de composition holds under certain assumptions, e.g., when obstacles are moving independently of ( i.e., not tracking ) the robot. Furthermore, we pose the VPP in path-time space, where time is explicitly represented as an extra dimension, and reduce it to a graph search in this space. In fact, VPP is transformed to a two-dimensional PPP in path-time space with some additional constraints. Algorithms are then pre sented to solve the VPP with different optimality criteria: minimum length in path-time space, and minimum time.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Reference20 articles.

Cited by 388 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Speed Planning Based on Terrain-Aware Constraint Reinforcement Learning in Rugged Environments;IEEE Robotics and Automation Letters;2024-03

2. Multi-robot motion planning;Autonomous Mobile Robots;2024

3. A Hierarchical Lane-Changing Trajectory Planning Method Based on the Least Action Principle;Actuators;2023-12-26

4. A Bilevel Optimization Scheme for Persistent Monitoring;2023 62nd IEEE Conference on Decision and Control (CDC);2023-12-13

5. Generation of an adaptive ascending step for a lower limb exoskeleton;2023 IEEE International Conference on Robotics and Biomimetics (ROBIO);2023-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3