Topological belief space planning for active SLAM with pairwise Gaussian potentials and performance guarantees

Author:

Kitanov Andrej1ORCID,Indelman Vadim1

Affiliation:

1. Department of Aerospace Engineering, Technion - Israel Institute of Technology, Haifa, Israel

Abstract

Determining a globally optimal solution of belief space planning (BSP) in high-dimensional state spaces directly is computationally expensive, as it involves belief propagation and objective function evaluation for each candidate action. However, many problems of interest, such as active SLAM, exhibit structure that can be harnessed to expedite planning. Also, in order to choose an optimal action, an exact value of the objective function is not required as long as the actions can be sorted in the same way. In this paper we leverage these two key aspects and present the topological belief space planning (t-bsp) concept that uses topological signatures to perform this ranking for information-theoretic cost functions, considering only topologies of factor graphs that correspond to future posterior beliefs. In particular, we propose a highly efficient topological signature based on the von Neumann graph entropy that is a function of graph node degrees and supports an incremental update. We analyze it in the context of active pose SLAM and derive error bounds between the proposed topological signature and the original information-theoretic cost function. These bounds are then used to provide performance guarantees for t-bsp with respect to a given solver of the original information-theoretic BSP problem. Realistic and synthetic simulations demonstrate drastic speed-up of the proposed method with respect to the state-of-the-art methods while retaining the ability to select a near-optimal solution. A proof of concept of t-bsp is given in a small-scale real-world active SLAM experiment.

Funder

Israel Science Foundation

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3