Affiliation:
1. Division of Applied Mechanics Stanford University Stanford, California 94305
2. Lockheed Palo Alto Research Laboratory Palo Alto, California 94304
Abstract
Extensive experience has shown that the use of general- purpose, multibody-dynamics computer programs for the numerical formulation and solution of equations of motion of robotic devices leads to slow evaluation of actuator forces and torques and slow simulation of robot motions. In this paper, it is shown how improvements in computational efficiency can be effected by using Kane's dynamical equations to formulate explicit equations of motion. To these ends, a detailed analysis of the Stanford Arm is presented in such a way that each step in the analysis serves as an illustrative example for a general method of attack on problems of robot dynamics. Simulation results are reported and are used as a basis for discussing questions of computational efficiency.
Subject
Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software
Cited by
242 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献